top of page

Organic Chemistry

Organic compounds are based on the chemistry of carbon. Carbon is unique in the variety and extent of structures that can result from the three-dimensional connections of its atoms. The process of photosynthesis converts carbon dioxide and water to oxygen and compounds known as carbohydrates. Both cellulose, the substance that gives structural rigidity to plants, and starch, the energy storage product of plants, are polymeric carbohydrates. Simple carbohydrates produced by photosynthesis form the raw material for the myriad organic compounds found in the plant and animal kingdoms.

ORGANIC CHEMISTRY PIC 3.jpg

1. Alcohols

Alcohols are the family of compounds that contain one or more hydroxyl (-OH) groups attached to a single bonded alkane. Alcohols are represented by the general formula -OH. Alcohols are important in organic chemistry because they can be converted to and from many other types of compounds. Reactions with alcohols fall into two different categories. Reactions can cleave the R-O bond or they can cleave the O-H bond.

alcohols pic 3.jpg

Preview Lectures

2. Amines

Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group (these may respectively be called alkylamines and arylamines; amines in which both types of substituent are attached to one nitrogen atom may be called alkylarylamines).

AMINES PIC 3.jpg

Preview Lectures

3. Benzaldehyde 

Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is the simplest aromatic aldehyde and one of the most industrially useful. It is a colorless liquid with a characteristic almond-like odor.

Preview Lectures

BENZALDEHYDE PIC 4.jpg

4. Carbohydrates

A carbohydrate is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula Cm(H2O)n (where m may or may not be different from n). However, not all carbohydrates conform to this precise stoichiometric definition (e.g., uronic acids, deoxy-sugars such as fucose), nor are all chemicals that do conform to this definition automatically classified as carbohydrates (e.g. formaldehyde).

CARBOHYDRATES PIC 3.jpg

Preview Lectures

bottom of page